

## Are My Facilities "Public Safety Grade?"

Presented by:

Brad Barber, V.P., LMR/Wireless Practice Travis LePage, Director, LMR/Wireless Practice



## Introductions

- Brad Barber:
  - 38 years of public safety experience, including public safety system management and support, & emergency communications consulting
  - 18 years as a public safety consultant
- Travis LePage:
  - 24 years of public safety communications experience, including public safety system site development, system implementation, and interoperable communications plan development
  - 20 years as a public safety consultant
- Federal Engineering Inc:
  - Four decades of experience with emergency communications systems

0 2024

August 4-7 | Orlando, FL

• Over 2,500 successful projects



## Agenda

- What does "Public Safety Grade" mean?
- Why "Public Safety Grade" must become the "New Norm"
- What does the "Public Safety Grade" scope cover?
- What are the risk factors?
- Key requirements for public safety grade facilities
- Assessing sites for public safety grade characteristics
- Mitigation approaches to address gaps identified in site assessments
- Q&A





## What Does "Public Safety Grade" Mean?

- "The term "Public Safety Grade" is a .... term that refers to the expectation of emergency response providers and practitioners that their equipment and systems will remain operational during and immediately following a major natural or manmade disaster on a local, regional, and nationwide basis."
  - NPSTC "Defining Public Safety Grade Systems and Facilities" Final Report 5/22/2014
- "...public safety requirements regarding various characteristics to make mission critical communications network sites sufficiently robust to meet the service availability requirements of public safety. In other words, what it takes to make network sites "public safety grade" or the extent to which they are "hardened."
  - ANSI/APCO "Public Safety Grade Site Hardening Requirements" APCO ANS 2.106.1-2019





## What Does "Public Safety Grade" Mean?

- "Public Safety Grade" in plain language is the ability of infrastructure to support Public Safety's Mission to protect life and property during and following natural and manmade events without the degradation or loss of continuity of operations.
- Achieving "Public Safety Grade" requires implementing physical, electronic, and cybersecurity resources to Identify, Protect, Detect, Respond, and Recover from events that impede the Public Safety Mission.





## Why "Public Safety Grade" Has to Become the "New Norm"

 2023 marks the fourth consecutive year where the frequency and impact of events have increased



Updated: January 9, 2024

Event statistics are added according to the date on which they ended. Powered by ZingChart

## "Public Safety Grade" Service Delivery Impact – Calls for Service

- As of 2021, there are over 5,700 primary and secondary Emergency Communications Centers (ECCs) in the U.S.
- Over 3,000 counties have ECCs
- "Public Safety Grade" systems needed to protect:
  - Over 600,000 9-1-1 calls for help made per day
  - Over 25,000 9-1-1 calls for help made per hour

Source: https://www.nena.org/page/911Statistics





## Resiliency Enables Continuity Across the Public Safety Ecosystem

 "The ability to maintain voice and data communications at all times is critical for public safety agencies to perform their life-saving missions. By establishing resiliency measures, public safety communications can better withstand potential disruptions to service."

Communications and Cyber Resiliency Toolkit | CISA



APCO 2024 August 4-7 | Orlando, FL

## What's Covered by the "Public Safety Grade" Scope?

- Wireless network equipment transceivers and supporting equipment
- System interconnection, alternate routing, backhaul network equipment
- Network supporting devices, including routers, switches, servers
- Equipment enclosures including budlings, shelters, cabinets
- Environmental and security support systems
- Commercial, emergency standby power systems
- Antenna support structures, including towers, rooftops, and poles
- Physical security, including roads, gates, fences, and cameras
- All capability elements within the agency's toolkit





## What are the Risk Factors?

- Environmental
  - Wind, flood, fire, seismic, ice, nuclear
- Power
  - Grid failures, emergency power fuel supply, standby capacity
- Security
  - Physical, cyber, site access, and access control
- Resiliency
  - Tower structures & risk category, transport network(s), grounding and lightning protection



August 4-7 | Orlando, FL

0 2024



## **FEMA National Risk Index Map**

Map | National Risk Index (fema.gov)

#### **Risk Index**



The Risk Index rating is Relatively High for Orange County, FL when compared to the rest of the U.S.

| Hazard Type          | EAL Value     | Social<br>Vulnerability | Community<br>Resilience | CRF  | Risk Value    | Risk Index Score |
|----------------------|---------------|-------------------------|-------------------------|------|---------------|------------------|
| Hurricane            | \$172,391,267 | Very High               | Relatively<br>Moderate  | 1.21 | \$211,501,591 | 99.1             |
| Tornado              | \$40,542,202  | Very High               | Relatively<br>Moderate  | 1.21 | \$50,366,217  | 99.3             |
| Wildfire             | \$22,936,932  | Very High               | Relatively<br>Moderate  | 1.21 | \$23,639,438  | 99.5             |
| Lightning            | \$5,937,536   | Very High               | Relatively<br>Moderate  | 1.21 | \$7,453,327   | 99.7             |
| Strong Wind          | \$2,598,155   | Very High               | Relatively<br>Moderate  | 1.21 | \$3,168,925   | 96.2             |
| Riverine<br>Flooding | \$1,989,076   | Very High               | Relatively<br>Moderate  | 1.21 | \$2,573,293   | 85.5             |
| Cold Wave            | \$1,867,398   | Very High               | Relatively<br>Moderate  | 1.21 | \$2,257,170   | 97.5             |
| Drought              | \$2,031,830   | Very High               | Relatively<br>Moderate  | 1.21 | \$1,940,602   | 97.6             |
| Earthquake           | \$1,274,938   | Very High               | Relatively<br>Moderate  | 1.21 | \$1,588,538   | 84               |
| Landslide            | \$122,400     | Very High               | Relatively<br>Moderate  | 1.21 | \$157,098     | 88.4             |
| Hail                 | \$23,240      | Very High               | Relatively<br>Moderate  | 1.21 | \$28,684      | 22.9             |

### APCO 2024 August 4-7 | Orlando, FL



#### Risk Factor Breakdown

## Identifying Gaps in "Public Safety Grade" Facilities

 The Cybersecurity and Infrastructure Security Agency's (CISA) Infrastructure Resilience Planning Framework (IRPF) provides a five-step method to identify and manage "Public Safety Grade Facilities"







### "Public Safety Grade" Communications Site Assessments – **Prepare for Assessment**

- 1) "Right-size" site assessment based on baseline standards, budget, resource availability, and site criticality
- 2) Establish standards baseline according to national, state, local codes and regulations
- 3) Add to baseline from the ANSI/APCO Public Safety Grade Site Hardening Requirements (APCO ANS 2.106.1-2019)
- 4) Consider dependencies (reference CISA toolkits)
- 5) Finalize assessment checklist and execute plan





## "Public Safety Grade" Communications Site Assessments – **Dependencies**

 As the threat environment widens and deepens, assessments also review resource dependencies for a site to continue functioning





Utility provider Substation (primary and alternates) Generator fuel re-supply Natural gas supply and delivery

CYBER SECURITY



Server and cloud-based service dependencies Geographic locations and paths SLAs Failure and backup modes



COMM. SERVICES

Who is served by the site?

Backup resources (COWs,

Who serves the site?

etc.)

Primary/secondary Wastewater Flooding Dry outs



Roadways Bridges Tunnels Highway Ingress/Egress for site



#### SERVICES

Recovery services Maintenance services Supply services

## "Public Safety Grade" Site Assessments – Finalize Checklist and Execute Plan

#### **#1 – Perform 360° Review**

Involve peers, field personnel, administrators, and executives: final buy-in

#### **#3 – Perform Assessments**

Inspect against standards/best-practices and dependencies

#### **#5 – Develop Action Plan**

Short, mid, long-term Resiliency solutions Implementation strategies

#### #2 – Publish Site Assessment Checklist

Hard copy, electronic/tablet, web form

#### #4 – Analyze Findings and Assess Risks

Threat scenarios Threat assessments Threat controls and asset protection

#### #6 – Continual Review and Improvement Plan

Inspection and adaption to meet/exceed objectives Modernization roadmap

### **Greenfield or New Site Builds**



## **Existing Site Assessments**



## **Third-Party Collocation Sites**



## Mitigation Approaches to "Public Safety Grade" Facilities

- Performance Evaluation Method for Identifying Risk
- The Community Resilience Planning Guide (CRPG) approach can be used to evaluate the operational capabilities of facilities against goals under threat/hazard scenarios.
- The CRPG emphasizes characterizes how long a community can continue to operate if various services and systems are compromised.
  APCO 2024

August 4-7 | Orlando, FL



## Mitigation Approaches to "Public Safety Grade" Facilities

| Priority<br>Infrastructure       | Support<br>Needed | Phase 1<br>Short Term (Hours) |       | Phase 2<br>Intermediate (Weeks) |     |     | Phase 3<br>Long Term (Months) |     |      |     |
|----------------------------------|-------------------|-------------------------------|-------|---------------------------------|-----|-----|-------------------------------|-----|------|-----|
|                                  |                   | 0 -24                         | 24-48 | 48-72                           | 1-4 | 4-8 | 8-12                          | 3+  | 4-24 | 24+ |
| Infrastructure<br>System/Asset 1 | R, S, MS C        | 90%                           |       |                                 |     |     |                               |     |      |     |
| Infrastructure<br>System/Asset 2 | R                 | 30%                           | 90%   |                                 |     |     |                               |     |      |     |
| Infrastructure<br>System/Asset 3 | MS                |                               |       | 30%                             | 60% |     | 90%                           |     |      |     |
| Infrastructure<br>System/Asset 4 | С                 |                               | 30%   |                                 |     | 60% |                               | 90% |      |     |
| Infrastructure<br>System/Asset 5 |                   | 60%                           | 90%   |                                 |     |     |                               |     |      |     |

**APCO 2024** 

August 4-7 | Orlando, FL

(R) Regional: Neighboring communities, county government

(S) State: State authorities

(MS) Multi-State: Council of governments/governors, interstate support

(C) Corporate/Community Organizations: e.g. Red Cross, major industries in community or region

# A Few Examples...





### CISA RESILIENT POWER BEST PRACTICES



Level 1 Resilience - Least-cost best practices to provide a commercially reasonable chance of maintaining power for at least **three days** under all hazards



Level 2 Resilience - Best-efforts approach to maintain power for at least **seven days** under all hazards



Level 3 Resilience – Covers the most critical infrastructure where power should be sustained under all hazards for at least 30 days



How long does it take to respond, restore power, add fuel, etc.? How long does site need to run on batteries, UPS, emergency generator?

APCO 2024 August 4-7 | Orlando, FL



## Site Designs and Modifications



Most commercial towers built and analyzed at a Class II risk category (TIA 222)

Structures used primarily for redundant services that may be provided by other means) such as commercial wireless communications....**non-hardened sites** that support antennas or equipment that may be used for redundant communications by police and fire departments, first responders, etc., during emergencies



Critical public safety sites should be built and analyzed at a Class III risk category (TIA 222), particularly in areas subject to frequent hurricanes, tornadoes, etc.

Structures in this category are used for communications across nonredundant and **hardened networks** such as civil or national defense, rescue or disaster operations, military and navigation facilities.



Flood risk for all site structures

All structures in a flood-prone area must be elevated above the expected flood level. This includes tower bases, shelters, generators, fuel tanks, and other structures that may all require elevated platforms.

> APCO 2024 August 4-7 | Orlando, FL



## **Network Resiliency**



#### Figure 1: Route Diversity Examples<sup>2</sup>

**APCO 2024** 

August 4-7 | Orlando, FL

Public Safety Communications Resiliency Ten Keys to Obtaining a Resilient Local Access Network CISA



## **Developing Priorities**

- Risk Analysis
  - Probability, impact, cost to mitigate, cost of <u>NOT</u> mitigating
- Site criticality
  - Type of site, its age, location, and condition
  - Role in the continued operation of communications systems
  - Examples:
    - Core: Required for all system operations, a network control site
    - Critical: Critical to system operations, e.g., a primary microwave backhaul site
    - High-Criticality: Impact to system coverage or capacity; a radio site that serves a high population area
    - Medium-Criticality: Example Site that serves a suburban area or a spur microwave site
    - Low-Criticality: A site in a low-population area or the last site in a microwave spur.
- Other factors such as the needs of the agencies, calls for service, coverage gaps, redundancy, resiliency, population density, and population migration trends

August 4-7 | Orlando, FL



## **Contact Info**



**Brad Barber** 

Vice President, LMR/Wireless Practice Mobile: 850-377-7707

Email: <u>bbarber@fedeng.com</u>





Travis LePage Director, LMR/Wireless Practice MBA, PMP, PMI-ACP, CSM Mobile: 585-507-9731

Email: <u>tlepage@fedeng.com</u> APCO 2024 August 4-7 | Orlando, FL

## **Questions and Answers**



## **Thank You!**





|                      |                                                                                         | Adoption |                                                                                                           |
|----------------------|-----------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------|
| Short Name           | Author                                                                                  | Date     | Document Title                                                                                            |
| ANSI/TIA-1019A       | American National<br>Standards Institute<br>/<br>Telecommunicatio<br>ns Industry Assoc. | 2012     | Standard for Installation, Alteration and<br>Maintenance of Antenna Supporting<br>Structures and Antennas |
| ANSI T1.313-         | American National                                                                       | 2003     | Electrical Protection of Communications                                                                   |
| 2003                 | Standards Institute                                                                     |          | Towers and Associated Structures<br>(Superseded ATIS 0600313, 12/2013)                                    |
| ANSI T1.334-<br>2002 | American National<br>Standards Institute                                                | 2002     | Electrical Protection For<br>Telecommunications Central Offices                                           |

| ANSI/TIA-222-G   | American National   | 2009                   | Structural Standard for Antenna        |
|------------------|---------------------|------------------------|----------------------------------------|
|                  | Standards Institute |                        | Supporting Structures and Antennas     |
|                  | /                   |                        |                                        |
|                  | Telecommunicatio    |                        |                                        |
|                  | ns Industry Assoc.  |                        |                                        |
| ASCE-7           | American Society    | 2013                   | Minimum Design Loads for Buildings     |
|                  | of Civil Engineers  |                        | and Other Structures                   |
| CLF-SFR0111      | Chain Link Fence    | Not                    | Chain Link Fence Manufacturers         |
|                  | Manufacturers       | Provided <sup>29</sup> | Institute Security Fencing             |
|                  | Assoc.              |                        | Recommendations                        |
| OET- Bulletin 65 | Federal             | 1997                   | Evaluating Compliance with FCC         |
|                  | Communications      |                        | Guidelines for Human Exposure to       |
|                  | Commission          |                        | Radiofrequency                         |
|                  |                     |                        | Electromagnetic Fields, Office of      |
|                  |                     |                        | Engineering and Technology Bulletin 65 |

| IEC 61024-1-2 | International<br>Electrotechnical<br>Commission            |      | Protection of structures against<br>lightning –<br>Part 1-2: General principles – Guide B –<br>Design, installation, maintenance and<br>inspection of lightning protection<br>systems |
|---------------|------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IEC 61643-1   | International<br>Electro technical<br>Commission           | 2011 | Low Voltage Surge Protective Devices,<br>Testing                                                                                                                                      |
| IEEE C62.45   | Institute of<br>Electrical and<br>Electronics<br>Engineers | 2002 | Surge Protection Device Testing                                                                                                                                                       |
| IEEE STD 1100 | Institute of<br>Electrical and<br>Electronics<br>Engineers | 1999 | Recommended Practice for Powering<br>and Grounding [Revised 2005]                                                                                                                     |
| IEEE STD 1159 | Institute of<br>Electrical and<br>Electronics<br>Engineers | 2001 | Recommended Practice for Monitoring<br>Electric Power Quality [Revised 2009]                                                                                                          |

| NEMA 250                  | National Electrical<br>Manufacturers<br>Assoc. | 2008               | Enclosures for Electrical Equipment,<br>1000V Maximum                                  |
|---------------------------|------------------------------------------------|--------------------|----------------------------------------------------------------------------------------|
| NFPA 70 (also<br>the NEC) | National Fire<br>Protection<br>Association     | 2014 <sup>30</sup> | National Electric Code                                                                 |
| NFPA 780                  | National Fire<br>Protection<br>Association     | 2011               | Standard for the Installation of<br>Lightning Protection Systems [Revised<br>for 2014] |
| NFPA 1144                 | National Fire<br>Protection<br>Association     | 2008               | Standard for Reducing Structure<br>Ignition Hazards from Wild land Fire                |
| Motorola R56              | Motorola<br>Solutions, Inc.                    | 2005               | Standards and Guidelines for<br>Communication Sites                                    |

| UL-1449 | Underwriters<br>Laboratory | 2006 | Surge Protective Devices                                                     |
|---------|----------------------------|------|------------------------------------------------------------------------------|
| UL-72   | Underwriters<br>Laboratory | 2001 | Tests for Fire Resistance of Record<br>Protection Equipment                  |
| UL-752  | Underwriters<br>Laboratory | 2005 | Standard of Safety for Bullet-Resisting<br>Equipment                         |
| UL-96A  | Underwriters<br>Laboratory | 2013 | Lightning Protection Components                                              |
| UL-1449 | Underwriters<br>Laboratory | 2009 | Standard for Safety for Surge Protective<br>Devices, 3 <sup>rd</sup> Edition |